Y=4x^2-18-10

Simple and best practice solution for Y=4x^2-18-10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for Y=4x^2-18-10 equation:



=4Y^2-18-10
We move all terms to the left:
-(4Y^2-18-10)=0
We get rid of parentheses
-4Y^2+18+10=0
We add all the numbers together, and all the variables
-4Y^2+28=0
a = -4; b = 0; c = +28;
Δ = b2-4ac
Δ = 02-4·(-4)·28
Δ = 448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{448}=\sqrt{64*7}=\sqrt{64}*\sqrt{7}=8\sqrt{7}$
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{7}}{2*-4}=\frac{0-8\sqrt{7}}{-8} =-\frac{8\sqrt{7}}{-8} =-\frac{\sqrt{7}}{-1} $
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{7}}{2*-4}=\frac{0+8\sqrt{7}}{-8} =\frac{8\sqrt{7}}{-8} =\frac{\sqrt{7}}{-1} $

See similar equations:

| -3(-1x-1)=-9-3x | | x-0.15x+12=x | | 3(2v-2)=6+4v | | 0.8a=51 | | -8(3-3r)=7r+27 | | .4x+105=180 | | 36n-31=3n+5 | | -n-4/2=16 | | 2+1p=-2(-1-7p) | | 2p+8=−2 | | 6(-6x+2)=-276 | | 2(7x+5)=-14+6x | | (3x^-2/5)+20=27 | | -114=-6(1-3n) | | -112=8-8(1+2x) | | 3x^-2/5+20=27 | | 8x+15=4+25 | | 4/v=17/3 | | 4(-1x+9)=34 | | x^2-12x-36=47 | | 8n+8(5-4n)=-152 | | 4m+10=26m= | | 2^x.3^x=7776 | | 3x^2/5+20=27 | | -5(8x-2)=250 | | 10y+2/4y+2=8/9 | | 17x-6=5x+18 | | -108=-8(1x+7)-5x | | 17-6=5x+18 | | 6(2n=5)=66 | | 2x+(5)/(8)=5x-(19)/(8) | | -8=-(2x-4) |

Equations solver categories